Triple delooping for multiplicative hyperoperads

joint work with Maroš Grego and Michael Batanin

Florian De Leger de-leger@math.cas.cz

Polynomial monads

Let \mathcal{E} be a locally cartesian closed category. A *polynomial* over \mathcal{E} [2] is a diagram in \mathcal{E} of shape

$$I \xrightarrow{s} E \xrightarrow{p} B \xrightarrow{t} J.$$

We call *extension* of this polynomial the composite

$$C/I \xrightarrow{\Delta_s} C/E \xrightarrow{\Pi_p} C/B \xrightarrow{\Sigma_t} C/J,$$

where Δ_s is the base change along s, Π_p is the dependent product along p and Σ_t is the dependent sum along t. A polynomial functor [2] is any functor isomorphic to the extension of a polynomial. A polynomial monad [2] is a monad whose underlying functor is polynomial and whose unit and multiplication

Baez-Dolan plus construction

We now focus to the case where $\mathcal{E} =$ Set is the category of sets. Let P be a polynomial monad, whose underlying functor is the extension of the polynomial 1, with I = J. We can construct a new polynomial monad P^+ , called *Baez-Dolan plus construction* [1, 3], whose underlying functor is the extension of

$$B \xrightarrow{s^+} tr(P)^* \xrightarrow{p^+} tr(P) \xrightarrow{t^+} B,$$

where tr(P) is the set of *P*-trees, that is trees whose edges are decorated in *I* and vertices are decorated in *B* in a coherent way [3], and $tr(P)^*$ is the set of *P*-trees with one marked vertex. The map s^+ returns the element decorating the marked vertex, the map p^+ forgets the marking and the map t^+ is given by contracting all the inner edges of the tree and composing the elements of *B* decorating its vertices accordingly, using the monad structure on *P*. The multiplication of the monad P^+ is given by insertion of a tree inside a vertex.

Iterating the Baez-Dolan construction from the identity monad on Set, one gets consecutively the *free monoid monad* and the monad for *non-symmetric operads*. Iterating yet again gives a polynomial monad whose algebras we call *hyperoperads*.

Presentation of our result

Any planar rooted tree T generates a non-symmetric operad $\Omega_p(T)$, whose set of colours is the set of edges of T and the operations are generated by the vertices

of the tree [4]. The category of planar rooted trees Ω_p is defined as the full subcategory of the category of non-symmetric operads whose objects are $\Omega_p(T)$ for any tree T.

For a planar rooted tree T, we write $\alpha(T) = l(T) + 1$, where l(T) is the set of leaves of T. This obviously extends to a functor $\alpha : \Omega_p \to \text{Set}$. We write Ω_p^* for the category of elements of α and $\pi : \Omega_p^* \to \Omega_p$ for the projection.

We call a hyperoperad *multiplicative* when it is equipped with a map from the terminal object. A multiplicative hyperoperad gives rise to a covariant presheaf \mathcal{O}^{\bullet} over Ω_p . Our main result is the following theorem:

Theorem 1 Let \mathcal{O} be a multiplicative hyperoperad in the symmetric monoidal category of topological spaces. Assume that $\mathcal{O}(T)$ is contractible for all trees with zero or one vertices. Assume also that holim $\pi^*(\mathcal{O}^{\bullet})$ is contractible, where π^* is the restriction functor associated to π . Then there is a triple delooping

 $\Omega^{3}\mathrm{Map}_{HOp}(1, u^{*}(\mathcal{O})) \sim \mathrm{holim}\,\mathcal{O}^{\bullet}$

where 1 is the terminal hyperoperad, u^* is the forgetful functor from multiplicative hyperoperads to hyperoperads and $Map_{HOp}(-,-)$ is the homotopy mapping space in the category of hyperoperads.

References

Baez, J.; Dolan, J. Higher-dimensional algebra III: n-categories and the algebra of opetopes. Adv. Math. 135 (1998), no. 2, 145–206.
Gambino, N.; Kock, J. Polynomial functors and polynomial monads. Math. Proc. Cambridge Philos. Soc. 154 (2013), no. 1, 153–192
Kock, J.; Joyal, A.; Batanin, M.; Mascari, J.-F. Polynomial functors and opetopes. Adv. Math. 224 (2010), no. 6, 2690–2737.
Moerdijk, I.; Toën, B. Simplicial methods for operads and algebraic geometry. Springer Science & Business Media (2010)